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Abstract. In this article, we introduce a global optimization algorithm that integrates the
basic idea of interval branch and bound, and new local sampling strategies along with
an efficient data structure. Also included in the algorithm are procedures that handle con-
straints. The algorithm is shown to be able to find all the global optimal solutions under
mild conditions. It can be used to solve various optimization problems. The local sampling
(even if done stochastically) is used only to speed up the convergence and does not affect
the fact that a complete search is done. Results on several examples of various dimensions
ranging from 1 to 100 are also presented to illustrate numerical performance of the algo-
rithm along with comparison with another interval method without the new local sampling
and several noninterval methods. The new algorithm is seen as the best performer among
those tested for solving multi-dimensional problems.
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1. Introduction

One of the challenging mathematical problems of enormous theoretical and
practical importance is how to find the globally optimal value of an objec-
tive function f(x) and at least one global optimizer over a bounded multi-
dimensional interval domain � in Rd, possibly subject to other equality
and inequality constraints. That is,

minimize f(x),

subject to h(x)=0, g(x)�0, x ∈�. (1)

Unlike local optimization problems, the global problem presents a number
of difficult issues. First of all, there is no single verifiable sufficient condi-
tion for a globally optimal solution unless it is a very special case. Either
a global behavior of f(x) (for example, Lipschitz constant, cf. Clausen and
Zilinskas, 2002) is used or the entire search domain is examined by global
search algorithms. Usually two categories of search algorithms are thought
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to be available. Deterministic algorithms for solving Problem (1) are gener-
ally based on the idea of branch and bound, which include interval meth-
ods (cf. Moore, 1979; Horst and Tuy, 1990) and cell exclusion methods (cf.
Xu et al., 1997). Stochastic algorithms include probabilistic decision mak-
ing that makes it possible to escape from locally optimal solutions in a
probabilistic sense (cf. Kirkpatrick et al., 1983).

Interval branch and bound is one of the successful methods for solving
the global problem. However stochastic search methods (such as the sim-
ulated annealing method and genetic algorithms) have been more popular
choices because of their simplicity of implementation and relative quickness
for reaching an approximate solution. But stochastic methods generally
do not guarantee convergence to a global solution when a particular run
ends. At most, they might guarantee convergence to a global solution in
a probabilistic sense when the search process continues indefinitely. Even if
a good approximate solution has been encountered during the search pro-
cess, stochastic methods do not have reliable mechanism to detect it. This
inevitably leads to additional and unnecessary computational efforts. Many
stochastic search methods have been designed for solving unconstrained
problems. Under the presence of constraints, their performance deteriorates
even more and there are few theoretical justifications. Under the framework
of interval branch and bound, a number of advantages are well known.
(1) It guarantees convergence to all global solutions under weak assump-
tions, even in the presence of round-off errors. (2) It offers reliable stopping
criteria so that the algorithm does not have to run longer than necessary.
(3) It is numerically robust and handles round-off errors conveniently and
effectively. (4) It is theoretically justifiable. (5) It handles constraints with
relative ease and without jeopardizing theoretic justifications. Despite such
attractive features of the interval method, most published reports on their
applications seem to be generally limited to optimization problems in low
dimensions (say, much less than 100 according to our recent survey). Obvi-
ously, there are two major concerns in solving large dimensional problems:
large amount of memory space and slow speed of convergence. The num-
ber of subboxes to be processed in an interval method could potentially
increase exponentially with the dimension of the domain. Inspired by such
observations, we have investigated some new strategies associated with the
interval branch and bound methodology both theoretically and numerically.
This paper reports one new version of the interval algorithm that shows
improvement both in memory space usage and in overall speed of conver-
gence.

The rest of the paper is organized as follows. In Section 2, we review
major features of the interval branch and bound. In Section 3, local sam-
pling strategies are discussed. Our algorithm is presented in Section 4 along
with theoretical convergence results. Two implementational strategies of the
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interval method are also included. Numerical testing results are given in
Section 5, followed by final comments and conclusions in Section 6.

2. Interval branch and bound

The interval branch and bound is a rather broad deterministic global
optimization method. It uses interval arithmetics in the more general
framework of branch and bound (cf. Moore, 1966 for earlier works on
interval methods, Horst and Tuy, 1990 for more deterministic methods).
The standard branch and bound method was originally introduced in Falk
and Soland (1969) and Horst (1976), and more recently in Horst and Tuy
(1990). It includes recursive refinement of partition of the search domain
and underestimation of f(x) over partitioned subdomains. Interval meth-
ods were initially developed around the same time (cf. Moore, 1966, 1979).
Research on interval methods became a hot topic from late 1970s to
early 1990s (cf. Alefeld and Herzberger, 1983; Ratscheck and Rokne, 1988;
Neumaier, 1990; Hansen 1992) among many researchers in computer sci-
ence, operations research, and mathematics. During that period of time,
computers were becoming increasingly more popular and more power-
ful. Improved computer programming languages also helped promotion of
interval methods. A solid foundation had been laid by the end of 1980s.
Subsequent work certainly continues since 1990s (cf. Kearfott, 1996; Csall-
ner, 2001; Clausen and Zilinskas, 2002; Van Voorhis, 2002). Our list of ref-
erences is far from complete.

For ease of presentation, let I(�) be the set of all subintervals of �. Let
f * be the global minimum value of the objective function f(x), and X*
the set of all global minimizers in �. As in the interval analysis literature,
we use boxes and intervals interchangeably. A typical interval branch and
bound method consists of these key ingredients.

1. The bounding principle: Use an inclusion function F(X) : I (�)→ I (R),
or any function that determines a lower bound of f(x) over any X in
I(�).

2. Subdivision of domain: The whole domain � is not searched uniformly
for X* due to concerns on computational efficiency. Instead, certain
parts of � are searched more extensively than the others. The algorithm
splits up � into subboxes where the bounding principle is applied.
Usually, bisection is used recursively for this purpose.

3. A data structure that represents the remaining portion of the domain
that still needs to be processed: Usually it is represented as a list of sub-
boxes plus other attributes. We will refer to such a list as a list of nodes.

4. The branching principle (selection of a subbox for further process-
ing): Usually the subbox with the lowest lower bound of the objective
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function is selected for further processing (cf. Moore, 1966; Skelboe,
1974). Other selection criteria include the age or size of each subbox in
the list (cf. Hansen, 1992).

5. Deletion conditions: To increase efficiency of the method, unwanted
regions (where no global minimizer can be located) need to be identi-
fied and then deleted. The most commonly used deletion condition is
the lower bound condition

fbest <Lb(F(X)), (2)

where Lb(F(X)) is the lower bound of f(x), and fbest is the currently
known best value of the objective function. Later we will also use
Ub(F(X)) as the upper bound of f(x). The deletion condition (2) is
similar to the so-called midpoint test (cf. Ichida and Fujii, 1979). When
constraints are present in Problem (1), each processing subbox can
be checked against the constraint satisfaction requirements. By using
an inclusion function for each of the constraint functions, one can
tell if a subbox is definitely infeasible or indeterminate. Thus the con-
straint verification adds an additional deletion condition. In this sense,
the presence of constraints generally accelerates the deletion process of
unwanted regions. That becomes an advantage of the interval method.

6. Termination criterion. Obviously, any interval algorithm stops if there
are no more boxes to be processed.

There are a variety of implemented versions of the interval method.
There are also several accelerating devices reported in the literature.
Interval methods have been used for solving many different kinds of
mathematical problems: optimization of functions, systems of linear and
nonlinear equations, ordinary differential equations, partial differential
equations, and optimal controls, just to name some.

3. Local sampling

Sampling of points in processing boxes is not necessary for early versions
of the interval method. However, sampling is required to update fbest used
in (2). The standard local sampling strategy is to use the midpoint of the
local interval, resulting in the well-known midpoint test. Recently, Clausen
and Zilinskas (2002) also used a vertex sampling strategy for a simpli-
cal branch and bound in global optimization of Lipschitzian functions.
We introduce a variety of local sampling options for two (instead of one)
major objectives: (a) to reduce the search space more quickly by identify-
ing and deleting unwanted subregions as early as possible; (b) to provide a
better upper bound fbest of f *, which in turn would speed up the domain
reduction process.
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Our proposed sampling procedures include: (1) local optimization search
sampling, (2) random sampling, (3) global fake sampling. Local optimiza-
tion search sampling is favorable for finding a better upper bound of f *.
But it might come with a significant overhead of the computational cost.
We note that both the midpoint sampling and the local optimization search
sampling have been known for about two decades only for the purpose
of upgrading fbest. We are extending their usage for another important
objective, that is, to identify unwanted subregions. Thus we are taking
advantage of their extra benefit without extra computational cost. Ran-
dom sampling is simple both conceptually and computationally, and is also
effective for both identifying unwanted subregions of high objective func-
tion values and providing a better upper bound of f *. A small number
of random samples are recommended. Its effectiveness is confirmed by our
numerical results in Section 5. In any case, we will use the worst avail-
able sample point (e.g., with the highest objective function value) to deter-
mine the location of a subregion for early deletion since neighborhoods
of the worst point are more likely to satisfy the box deletion conditions.
Similarly, the best available sample point (e.g., with the lowest objective
function value) is used to update fbest. In practice there are situations in
which f(x) is constant (or nearly so). In these cases, the quality of a solu-
tion could be measured in terms of constraint violations. It is emphasized
that the local sampling (even if done stochastically) does not affect the
fact that a complete search is done with a guaranteed global convergence.
Our global fake sampling uses a finite initial value of fbest. This is only an
estimated value of f *. It is even not necessary to know the correspond-
ing xbest. This “fake” or nominal fbest is used to accelerate the deletion
process of subboxes. If this initial value is not too low, eventually it will
be overridden by a real value of fbest for which xbest is indeed available.
In that case, the use of the nominal fbest value does not effect the final
outcome of the algorithm. It only accelerates the speed of convergence.
However, if the initial value is set to be too low, a single run of the algo-
rithm may result in no solution even when X∗ �=φ because boxes contain-
ing desired global solutions might have been mistakenly deleted due to a
bad fbest value. If that actually happens, a new (larger) initial value of fbest

can be estimated based on the previous “fake” value of fbest and the final
real value of fbest. For example, the average value of the two might be
a reasonable choice. The algorithm is then run again under the new fbest

value. Of course, other sampling techniques can be incorporated just as
easily.

In many cases of importance, a reasonable estimate of f * may be readily
available. Sometimes, even the exact value of f * is also known. Consider
an important class of optimization problems arising from solving a system
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of linear or nonlinear equations

φ(x)=0. (3)

Problem (3) is, if solvable, equivalent to

min ‖φ(x)‖2, (4)

with f ∗ =0, where ‖.‖ is any norm. Thus in our method, the nominal value
of fbest can be taken to be 0. If our interval method results in no solu-
tion to (4) under this fake sampling strategy, then the original problem
(3) will have no solution either. Another important class of problems that
would justify the fake sampling is the optimization problem for the least-
squares data fitting. In this case, f * should be a small positive number or
zero. Consequently, the nominal value of fbest can be set to a small posi-
tive number. If only a fitted model with a desirable total fitting error toler-
ance is thought, then that tolerance value can be used as the nominal fbest.
In case no optimal solution is found by our interval method, we would be
able to conclude that no desirable fitted model exists. We also note that
most noninterval methods are more efficient than interval methods for gen-
erating a rough estimate of f *. Therefore, some noninterval methods may
be used before any interval method is attempted. Thus, by the time this
interval method is used, a fake value is already available.

When a subbox of the current processing box is deleted, usually 2d new
boxes will be needed to represent the remaining region (cf. Figure 1 for
illustration when d =2) if only simple boxes (plus other attributes) are used

compound box 

unwanted subbox 
(deleted)

worst sample point 
IV

III

II

I

Figure 1. Compound box with 4 simple subboxes after deletion of a subbox.
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in the data structure. However, we propose a more effective data structure
that consists of up to two simple boxes plus other desired attributes. The
first box is used to represent the current region (before deletion) as usual.
Another box is allocated and it represents the unwanted region that can be
deleted based on a local sampling procedure. In this way, we have saved
memory space when d is larger than one, without sacrificing accuracy of
information about the remaining processing region. Handling of this new
data structure creates only an insignificant amount of CPU time overhead
as shown by our numerical results in Section 5.

Even when we do not explicitly represent the compound region as shown
in Figure 1 as a union of 2d simple box regions, the compound region is
processed as if it were such a union. For example, when additional points
are sampled in the compound box, we obtain those samples from some of
its available subboxes. If we want to find a lower bound of the objective
function value over the present compound box, we could find the lower
bounds of the objective function values over those subboxes and then use
the smallest of them as a desired lower bound. When explicit constraints
are present, we add attributes for the compound region that would indicate
which of the 2d subboxes violate at least one constraint. More generally,
we could use appropriate attributes to indicate which of the 2d subboxes
have been designated as inactive due to a constraint violation or satisfac-
tion of any other deletion conditions. Such attributes are needed when the
compound box needs to be branched or sampled.

4. Proposed algorithm and its convergence

Before the overall algorithm is described, we first outline major objects
used in the algorithm as follows.

Lp = a primary list of nodes that represents the region to be searched.
Each node consists of one box (X1) or two boxes (X1, X2), plus attributes
including a lower bound ylb of f(x) over this region, indicators IDS of
deletion status (1=deleted, 0=remained) of its 2d subboxes, and indicators
ICS of constraint satisfaction status (1= satisfied, 0= indeterminate). Let Y

be the current processing box (simple or compound) and y as its ylb.
Ls = a saved list of nodes that are not deleted but do not need to be

further processed (i.e. inactive) according to some prescribed tolerances
(εbox, εf ) listed below.

εbox =a small box size threshold. Any active box X with size wid(X) less
than εbox will be moved from Lp to Ls.

εf =a small threshold of deviation of the objective function values. Any
active box with the fluctuation of the objective function value less than εf

will be stored into Ls as well.
fbest = the currently known best value of the objective function.
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xbest = the currently known best ε − feasible solution.

Xbest = the box that contains xbest.
F(X) : I (�)→ I (R), an inclusion function of f(x).
Hi(X) : I (�) → I (R), an inclusion function of each equality constraint

function hi(x).
Gj(X) : I (�)→ I (R), an inclusion function of each inequality constraint

function gj(x).
εh = a small threshold of absolute value of the equality constraint

functions. Any active box X with Hi(X) lying outside [−εh, εh] will be
designated as inactive due to violation of the equality constraint hi(x)=0.

εg = a small threshold of upper value of the inequality constraint func-
tions. Any active box X with Gj(X) lying outside (−∞, εg] will be consid-
ered as inactive due to violation of the inequality constraint gj(x)�0.

Procedure check update add simple (X):

Begin check update add simple():

Set ylb for the box X.
Check: (1) deletion condition based on fbest; exit the procedure if X is

deleted.
(2) deletion condition based on constraints; exit the procedure

if X is deleted.
Update: If X cannot be deleted, sample its midpoint and update fbest,
Xbest,and xbest if the midpoint is ε-feasible and is better than xbest.
Add: If X cannot be deleted, add it to the end of Lp.

End check update add simple().

Procedure check update add compound (Y ):

Begin check update add compound():

a) For each of its available subboxes X (up to 2d of them), do the follow-
ing.
Calculate ylb for the box X.
Check: (1) deletion condition based on fbest; update Y ’s attributes if X

is deleted.
(2) deletion condition based on constraints; update Y ’s attri-

butes
if X is deleted.

Update: If X cannot be deleted, sample its midpoint and update fbest,
Xbest, and xbest if the midpoint is ε-feasible and is better than xbest.

b) The surviving subbox with the lowest ylb is deleted from Y and added
to the end of Lp. Update Y ’s attributes accordingly. If the remaining Y

is not empty, add it to the end of Lp.

End check update add compound().
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Proposed Algorithm:

Step 1. Initialization. Set Y =�, and y = ylb = Lb(F (�)). Let Ls = Lp =φ

(empty). Set parameters εbox, εf , εh, εg to small positive values (εg

could be zero). Set all IDS and ICS components to 0. Set fbest =
∞, Xbest =φ, and xbest =φ

Step 2. Update.

2a. If the current box Y is a simple box, apply a local sampling
procedure to it. Update fbest, Xbest and xbest if necessary. Iden-
tify and delete a subbox of this simple box if possible. Update
its attributes accordingly.

2b. Check all the deletion conditions for the current box. If it can
be discarded, do it and go to (2g).

2c. If the current node is still a simple box, split the box
into two subboxes by a bisection along a direction per-
pendicular to an edge of the maximum length. Apply
procedure check update add simple (X) to both subboxes.
If the current node is a compound box, apply Procedure
check update add compound (Y ) instead.

2d. Discard some nodes from Ls based on the new fbest.
2e. Discard some nodes from Lp based on the new fbest.
2f. Move some nodes from Lp to Ls based on εbox and εf .
2g. If Lp =φ, stop.
2h. If some stopping criterion holds, stop.
2i. Select a new processing node from Lp and delete it from Lp.

The selection can be based on the smallest attribute ylb, the
largest size, or the largest age, in a cyclic fashion. Set Y and
its attributes. Repeat the updating step.

Step 3. Determination of final solutions. If xbest �= φ (empty), it will be
considered as an optimal solution. We may be able to get more
optimal solutions from the survived lists Lp and Ls. In fact, for
every box X from Lp and Ls, check its midpoint x. Consider x as
another optimal solution if all the following conditions are satis-
fied. (1) x satisfies constraints within the prescribed tolerances. (2)
f (x)� εf +fbest. (3) x is at least εbox distance away from the cur-
rent identified optimal solutions.

The presence of constraints generally accelerates the deletion process of
unwanted regions as we pointed out in Section 2. However, constraints may
also cause some headaches, especially the equality constraints. For example,
the standard midpoints sampled in the algorithm may not be feasible at all.
This prevents fbest from being updated. However, with our additional local
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sampling procedures, fbest has a better chance to be updated. The relax-
ation of constraints also helps for this cause. Of course, other treatment
options are also possible (e.g., Kearfott, 1996).

Many other strategies are available for further improvement. We only men-
tion a couple of them below that have been used in our numerical experiment.

1. If a feasible solution is available before the algorithm is applied, the ini-
tial fbest would be set to the objective function value of that solution.
The algorithm can be easily modified to keep track of best ε-feasible
solutions sampled by the algorithm in case the initial fake value fbest is
found to be totally wrong at the very end.

2. Stopping criteria. For practical considerations, the algorithm may be
stopped when

2a. #(f ), The total number of calls of f(x), or #(F ), the total number
of calls of its inclusion function F(X), reaches a prescribed limit;

2b. The total CPU time reaches a prescribed limit;
2c. The combined size of the lists reaches a prescribed limit.

Like other branch and bound methods (e.g., Ratscheck and Rokne, 1988;
Hansen, 1992), our new algorithm provides all desired solutions within the
prescribed tolerances. It is emphasized that although interval arithmetic is
used, the search is not perfectly rigorous because of the use of the toler-
ances. But we feel that such use of the tolerances greatly facilitates con-
vergence. Since they are generally small, they do not affect the quality of
final solutions for practical purposes. In some cases, they could be neces-
sary computationally. For example, when εh =0, a feasible point may never
be found after any finite number of updating steps of the algorithm. We
officially state our theoretical results in a theorem below. First, let LPn be
the sequence of the primary lists generated by the algorithm, and corre-
sponding to the list LPn, we denote

Un = the union of the remaining search regions determined by all the
boxes in LPn,

(Yn, yn)= the leading node for LPn(plus other attributes),
fn = the fbest for LPn,
X∗(εh, εg) = the set of optimizers under the relaxed constraints (or
ε-feasible optimizers). X∗ =X∗(0,0).
f ∗

ε = the globally optimal objective function value under the relaxed
constraints. f ∗ =f ∗

0 .

The saved list of nodes is used to reduce the computational cost by not
splitting the boxes that are of a sufficiently small size or where the objec-
tive function varies very little. However, it is not included in our theorem
below in order to obtain more concise theoretical convergence behaviors of
the algorithm with more straightforward proofs.
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THEOREM. Assumptions: 1. All the inclusion functions �(X) used in the
algorithm satisfy

wid(�(X))→0 as wid(X)→0.

2. εh >0, εg �0.
3. There is at least one x∗

ε in X∗(εh, εg) satisfying |hi(x
∗
ε )|<εh and gj(x

∗
ε )<εg

for all i and j.
4. The algorithm does not terminate after a finite number of updating itera-

tions.
5. The saved list of nodes is not used.

Conclusions: 1. wid(Zn)→0 for any box Zn in LPn.

2. yn �f ∗
ε and yn →f ∗

ε .
3. fn ↓f ∗

ε .
4. The sequence {Un} is nested and Un →X∗(εh, εg) under the Hausdorff dis-

tance.

Proof. In our proof, we frequently encounter sequences and their subse-
quences. For simplicity of notation, we often use the same notation for a
sequence and its subsequences. However we will specify when a new subse-
quence is introduced.

1. According to our alternating selection strategy, every surviving box in
the processing list will get processed at least once for a while. Hence we
get

wid(Zn)→0 for any box Zn in LPn (5)

as for the standard Hansen’s algorithm.
2. It is fairly obvious that yn � fε* for any n since only some unwanted

regions have been discarded. Now we want to show

yn →f ∗
ε .

Since {yn} is a bounded sequence, it suffices to show that every limit
point of yn is fε*. Suppose not. Then there would be a convergent sub-
sequence (still denoted by itself for simplicity)

yn →f # for some f # <f ∗
ε . (6)

Under this circumstance, we now show that f ∗
ε ∈F(Yn) for large enough

n, from which we get

yn =Lb(F (Yn))→f ∗
ε since wid(F (Yn))→0,
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contradicting (6). Suppose f ∗
ε /∈ F(Yn) for a subsequence of {n}, still

denoted by itself again for notational simplicity. Then

yn =Lb(F (Yn))�Ub(F (Yn))�f # <f ∗
ε , (7)

possibly for another f #. Thus every point in Yn is not ε-feasible.
Claim: Under condition (7), ∃δ >0 and a subsequence of {n} such that
for all large enough n in the new subsequence, either

∃i = in with |hi(x)|>εh + δ for all x ∈Yn, (8a)

or

∃j = jn with gj(x)>εg + δ for all x ∈Yn. (8b)

Suppose not. We first choose a subsequence of {Yn} converging to a sin-
gle point. This is possible due to (5). Then

∀i,∃δ(k, i)↓0,n(k, i)↑∞(as k ↑∞), and x(n(k,i),i) ∈Yn(k,i),

such that |hi(x
(n(k,i),i))|� εh + δ(k, i);

and

∀j,∃δ(k, j)↓0, n(k, j)↑∞(as k ↑∞), and x(n(k,j),j) ∈Yn(k,j),

such that gj(x
(n(k,j),j))� εg + δ(k, j).

By compactness of each box,
∀i, ∃ a convergent subsequence (still denoted by the original sequence)

x(n(k,i),i) →x(i) with |hi(x
(i))|� εh;

∀j , ∃ a convergent subsequence (still denoted by the original sequence)

x(n(k,j),j) →x(j) with gj(x
(j))� εg.

Since the subsequence Yn converges to a single point, x(i) =x(j) =x ′ for
some x ′ in � and all (i, j). This x ′ is therefore ε-feasible, that is

|hi(x
′)|� εh, gj(x

′)� εg for all i and j .

But this is impossible because of (7).
Assumption 1 and inequalities (8) imply that Yn should have been

deleted from the processing list by our algorithm due to the constraint
violation. This shows f ∗

ε ∈F(Yn) for large enough n under condition (6).
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3. The monotonicity of fn is fairly clear because fn represents the cur-
rently available best objective function value at updating iteration n. It
remains to show fε* as its limit. In fact, it suffices to show that a
subsequence of {fn} converges to fε*. Every list LPn should include a
box Zn that contains xε* from Assumption 3 since the optimal solu-
tion is never deleted. By Assumptions 1–3 and Conclusion 1, we have
for large n

Hi(Zn)⊆ [−εh, εh] and Ub(Gj(Zn))� εg for all i and j .

For such a box, we also have

f ∗
ε �fn �f (xn(local search))�f(x∗

ε )+wid(F (Zn)),

where xn(local search) is the best ε-feasible point identified by our local
sampling procedure over the box Zn. Our desired convergence result fol-
lows from wid(F (Zn))→0.

4. It suffices to show ∩Un ⊆ X∗(εh, εg) since only some unwanted regions
might have been discarded. Again we will try to get a contradiction
if we assume that, for some x0 /∈ X∗(εh, εg), x0 ∈ ∩Un. Every list LPn

includes a box Zn that contains this x0. Because of Conclusion 1, we
have Zn → x0 and consequently, F(Zn) → f (x0) > f ∗

ε due to continuity
of f(x). In view of Conclusion 3, we would have

Lb(F (Zn))>fn for large enough n.

Thus, such a box Zn should have been deleted by the algorithm, which
implies the desired contradiction. This completes the proof of the whole
theorem.

COROLLARY. In absence of constraints, the conclusions remain true for
ε =0 (that is, X∗(εh, εg)=X* and f ∗

ε =f ∗) without Assumptions 2–3.

5. Numerical results

To test performance of the new algorithm (denoted by IVL), we have
used several examples with or without constraints. Preliminary results on
six examples are presented below. Their dimensions vary from 1 to 100.
Most of these examples have been widely used by other people for test-
ing their new optimization algorithms (e.g., Floudas and Pardalos, 1990).
We have also used the corresponding interval algorithm with just the mid-
point sampling (IVM) along with a conventional simple node structure,
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and four (noninterval) stochastic methods to solve the same test prob-
lems for comparison. The four stochastic methods are a simulated anneal-
ing algorithm (SA, cf. Kirkpatrick et al., 1983), a tree annealing algorithm
(TA, cf. Sun, 2002, as a newer variant of SA), a genetic algorithm (GA, cf.
Goldberg, 1989), and a complete random search (RS). The noninterval
methods incorporate the constraints into the objective function through a
well-calibrated penalty term. The comparison results presented below are
by no means comprehensive and 100% realistic. In fact, we find it diffi-
cult to do a very realistic comparison since each algorithm has a number
of its own control parameters that could affect its individual performance.
It is difficult and probably impossible to find “equivalent” sets of all con-
trol parameters for two different algorithms. However, for each example,
we have used the same set of the shared parameters and the same ini-
tial solutions for all algorithms. To further increase reliability of the test
results on stochastic methods, each example is run 40 times using randomly
selected initial solutions and seeds for the random number generator while
the other parameters are fixed. The mean and standard deviation informa-
tion will be summarized. According to the statistics theory, statistically rea-
sonable conclusions could be drawn using 40 independent samples. Thus,
the results below could still provide some idea of effectiveness of the new
algorithm.

As usual, those noninterval algorithms don’t have precise stopping con-
ditions that would ensure immediate exit once a globally optimal solution
is found unless Problem (1) is special enough. But within any of the six
algorithms we never intentionally used any special information of objec-
tive functions or constraint functions although some of them seem fairly
special. Therefore, we have to use some brutal stopping conditions such
as these: (1) the number of calls of the objective function reaches a pre-
scribed limit; (2) the total computational time exceeds a specified limit;
(3) the number of generations is too big for GA; (4) there is no improve-
ment of fbest over a fixed number of iterations. Such stopping conditions
may result in a premature termination of any algorithm. They may also
result in some wastes of unnecessary iterations after reaching an optimal
solution. Unfortunately, these are just some of the pitiful features of many
noninterval algorithms.

As stated in Section 2, an inclusion function is usually required for
solving each optimization problem by using an interval method. Inclusion
functions are not unique. In fact, there are several well-known approaches
for constructing inclusion functions (cf. Ratscheck and Rokne, 1984).
(1) If the noninterval function can be described in some programming
language as an explicit expression without use of logical or conditional
statements, then the natural interval extension of it can be defined easily.
(2) If an inclusion function of the gradient or generalized gradient can be
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found, the meanvalue form can be used as an inclusion function. (3) If
an inclusion function of the Hessian matrix can be found, the 2nd-order
Taylor form can be used instead. In the examples presented below, we
use the natural interval extension whenever possible unless it is specified
explicitly.

Test results for each example are summarized in a separate table. The
first column of each table shows different algorithms used for that exam-
ple. The second column indicates the number of runs under the same set
of parameters but with random initial trial solutions and random seed val-
ues for the random number generator that is needed for all of our (non-
interval) stochastic methods used for comparison. The next column lists
the mean and standard deviation of the final solutions (represented by
fbest) obtained from different runs. The standard deviation is skipped if
there is only one run for an interval algorithm. The forth column lists
the mean and standard deviation of #(f ), the total number of calls of
f(x) for each run. For interval algorithms, we have split that number
into two parts, #(f ), the total number of calls of f(x), plus #(F ), the
total number of calls of its inclusion function F(X). Usually, a call of
F(X) is computationally more expensive than a call of f(x) (in fact, at
least several times more expensive). Our test results show that in some
cases, algorithm IVL is much more efficient than IVM because it takes
a significantly smaller number of F(X) calls although it usually requires
more calls of f(x) due to the new local sampling. The next column dis-
plays the mean and standard deviation of the total CPU time per run
of each method that would include real CPU time plus all the auxil-
iary times such as I\O times. However, we didn’t keep the CPU time if
it takes less than one millisecond. But, the mean and standard deviation
of CPU times displayed may be less than one millisecond since they are
literally calculated from the individual CPU time values. The final col-
umn shows the number of approximate global minimizers actually identi-
fied by the algorithm after the specified number of runs followed by, within
the parentheses, the number of different optimal solutions identified by
those runs. We have assumed that a single run of any of the four sto-
chastic algorithms can identify at most one approximate global minimizer.
Although all the algorithms might find only one optimal solution for a
certain example, only the interval methods ensure us that this is indeed
the only solution of that example. Even with 40 independent runs, the
noninterval algorithms only tell us with a large statistic confidence that
there is no other global solution of this example. In fact, some examples
below would convince us that this statistic conclusion might actually be
false sometimes. All of the test results have been generated by a Pentium
IV 1.6 Ghz PC. As we present test results of each example, we will also
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Table I. Summary of test results for Example 1

alg #(run) f-best (mean,std) #(f-call) mean,std time(h,m,s) mean,std #(x*)

SA 40 0.418958, 0.0081727 55, 2 7.5e−3s, 4.2e−4s 39(1)
GA 40 0.398692, 4.8e−9 38235, 237 0.84s, 5.0e−3s 40(1)
TA 40 0.398694, 7.09e−7 47572, 0 0.26s, 1.7e−3s 40(1)
RS 40 0.398692, 0 100000, 0 0.75s, 2.0e−3s 40(1)
IVM 1 0.398693 116+165 0.01s 1
IVL 1 0.398693 1016+179 0.02s 1

make some important observations and offer brief discussions about the
results.

EXAMPLE 1. Minimize f (x) = 5.0 + sin(x) + sin(10x/3) + log(x) − 0.84x,
over [2.7, 7.5]. Summary of the test results is in Table 1. SA tends to exit
prematurely sometimes. As a result, it used a much smaller number of calls
of f(x). All the other algorithms successfully identified the unique glob-
ally optimal solution after every run at the expense of more CPU time. RS
took the most f-calls because the limit on f-calls is the stopping condition.
The two interval algorithms took a small number of f-calls, while still pro-
viding a reliable final solution within a compatible amount of CPU time.
No advantage of the new algorithm IVL is seen over its counterpart IVM
for this one-dimensional example. In fact, its overhead of computational
effort seems dominant. This is, however, not beyond our expectations.

EXAMPLE 2. (cf. Yao et al. 1999). Minimize a six hump camel back func-
tion

f(x1, x2)=1.03163+4.0x2
1 −2.1x4

1 +x6
1/3.0+x1x2 −4.0(1.0−x2

2)x
2
2

over [−5,5] × [−5,5]. Summary of its test results is in Table 2. This
example has two globally optimal solutions. Only the interval algorithms
successfully identified both optimal solutions on a single run. The new

Table II. Summary of test results for Example 2

alg #(run) f-best (mean,std) #(f-call) mean,std time(h,m,s) mean,std #(x*)

SA 40 357.345, 77.5478 104, 4 2.5e−3s, 6.8e−4s 5(2)
GA 40 1.935e−6, 1.197e−7 61106, 2915 1.5s, 0.13s 40(2)
TA 40 0.0045, 0.00154 104191, 0 0.44s, 4.7e−3s 40(2)
RS 40 0.00205634, 0 100000, 0 1.3s, 2.5e−3s 40(1)
IVM 1 1.79869e−006 22531+32579 3m18.2s 2
IVL 1 2.22992e−006 50007+9068 15.1s 2
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interval algorithm IVL clearly outperforms the regular version IVM in
terms of the overall CPU time counts. The overhead of computational
effort of IVL is no longer dominant for this two-dimensional exam-
ple as we expected. The savings of CPU time under IVL come from
the reduction of #(F ) while keeping #(f ) + #(F ) roughly competitive.
That is our major expected advantage of the new method. Again, SA
shows a much worse average value of fbest due to many runs with pre-
mature exits. However, we noticed that a few best runs of SA also
reached a nearly optimal solution. Another important observation should
be made regarding RS. Although each of 40 independent runs finds
an optimal solution. But they actually reached the same global solu-
tion. The other global solution is completely missed. This also tells us
that using multiple starting points for a noninterval method is not a
sure way to get all the global solutions. In fact, there is no way to
determine how many starting points are needed to get all the global
solutions.

EXAMPLE 3. (cf. Sun, 2002). Minimize f (x)=‖max{A1x −b1, A2x−b2}‖1

over [−100,100]× [−100,100]× [−100,100], where

A1 =
⎡
⎣

1 0 −0.5
−0.5 1 0

0 −0.5 1

⎤
⎦ , b1 =

⎡
⎣

1
2
5

⎤
⎦ ,

A2 =
⎡
⎣

1 −0.5 0
−2/3 1 −1/5
−1/4 −1/3 1

⎤
⎦ , b2 =

⎡
⎣

2
1
3

⎤
⎦ .

Notice that this function is not smooth. This problem is equivalent to
the discretized version of the Hamilton–Jacobi–Bellman equation associ-
ated with an optimal control problem.

LEMMA. Consider

F(X)=�i=1,2,3 AbsIvl (MaxIvl((A1X −b1)i, (A2X −b2)i)),

where AbsIvl(A) is an inclusion function of |x|, and MaxIvl(A, B) is an
inclusion function of max{x, y}. Then F(X) is an inclusion function of f(x).

Table 3 shows that for a single run, only the interval methods find the
global solution accurately. RS fails to get any decent solution at all after
40 independent runs. Thus the interval methods are more reliable. This
example also shows more computational cost of IVL than IVM partially
because IVL reached a more accurate solution while IVM exited earlier.



78 M. SUN AND A. W. JOHNSON

Table III. Summary of test results for Example 3

alg #(run) f-best (mean,std) #(f-call) mean,std time(h,m,s) mean,std #(x*)

SA 40 6.98973, 1.61326 414, 31 9.8e−3s, 9.7e−4s 5(1)
GA 40 0.210567, 0.02329 104779, 2725 2.9s, 0.15s 35(1)
TA 40 4.17542, 0.3598 116851, 0 0.57s, 9.0e−3s 2(1)
RS 40 3.03519, 7.0e−17 100000, 0 1.8s, 1.8e−3s 0(0)
IVM 1 0.000165623 676+811 0.060s 1
IVL 1 4.631e−005 18463+3900 0.91s 1

EXAMPLE 4. (cf. Floudas and Pardalos, 1990)

Minimize f (x)=x0.6
1 +x0.6

2 −6x1 −4x3 +3x4,

subject to x1 −1/3x2 +x3 =0,

x1 +2x3 �4,

x2 +2x4 �4,

over [0,3] × [0,5] × [0,1] × [0,2]. This is a problem with equality and
inequality constraints mixed. Summary of its test results is in Table 4. The
table does not show #(H ) and #(G). However, our output files show that
they are usually of the same order of magnitude as #(f ).

Constraint verification is internally incorporated into the interval meth-
ods. But the noninterval methods enforce the constraints through a penalty
function (thus #(g) = #(h) = #(f )). The penalty function method comes
with a penalty coefficient whose value would effect the performance of
those noninterval methods. In all our test results with the penalty function
method, we only present results under one properly selected penalty coeffi-
cient value. Additional runs might have been done to calibrate its value.
Even under such favorable conditions, the noninterval methods still do not
outperform the interval methods.

This example shows a significant amount of increase in CPU time consump-
tion by the interval methods. One major reason is due to existence of equality
constraints. It is well know that equality constraints may make it harder for
interval methods to converge quickly. Another reason is that the numerical
results on the noninterval methods are based on a carefully selected penalty

Table IV. Summary of test results for Example 4

alg #(run) f-best (mean,std) #(f-call) mean,std time(h,m,s) mean,std #(x*)

SA 40 −1.20825, 0.22877 288, 16 5.8e−3s, 7.9e−4s 6(1)
GA 40 −4.26767, 0.01266 98187, 4363 3.2s, 0.21s 40(1)
TA 40 −3.22012, 0.11016 93447,0 1.4s, 0.017s 28(1)
RS 40 −3.27683, 7.0217e−17 200000,0 5.2s, 6.3e−3s 40(1)
IVM 1 −4.45083 38805+100001 33m52s 1
IVL 1 −4.4828 104141+18053 59s 1
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coefficient. Nevertheless, the interval methods offer a better final solution.
Again, IVL clearly shows a much better performance than IVM.

EXAMPLE 5. (cf. Michalewicz, 1996). Minimize

f (x)=5(x1 +x2 +x3 +x4)−5(x2
1 +x2

2 +x2
3 +x2

4)

−(x5 +x6 +· · ·+x12 +x13),

subject to 2x1 +2x2 +x10 +x11 �10,

2x1 +2x3 +x10 +x12 �10,

2x2 +2x3 +x11 +x12 �10,

−8x1 +x10 �0,

−8x2 +x11 �0,

−8x3 +x12 �0,

−2x4 −x5 +x10 �0,

−2x6 −x7 +x11 �0,

−2x8 −x9 +x12 �0,

0�xi �1, i =1,2,3,4,5,6,7,8,9,13,

0�xi �8, i =10,11,12.

Summary of the test results for Example 5 is in Table 5. The number of
calls of G(X) for interval algorithms IVM and IVL is, respectively, 255723
and 39135. This significant difference leads to a much greater amount of
CPU time savings for IVL.

EXAMPLE 6. (cf. Yao et al. 1999). Minimize a generalized Rastrigin’s
function

f (x)=
∑100

i=1
[x2

i −10 cos(2πxi)+10] over −5.12�xi �5.12,

i =1, . . . ,100.

This is a higher-dimensional example. Its lower-dimensional versions are
usually adopted as test examples by many researchers. Summary of its test
results is in Table 6. Once again, the interval methods remain reliable in

Table V. Summary of test results for Example 5

alg #(run) f-best (mean,std) #(f-call) mean,std time(h,m,s) mean,std #(x*)

SA 40 −15.8298, 0.35577 2313, 130 0.047s, 2.8e−3s 33(1)
GA 40 −16.8466, 0.04956 114803, 7673 6.4s, 0.45s 40(1)
TA 40 −8.9684, 0.167684 133155, 0 2.5s, 0.014s 1(1)
RS 40 −8.36159, 0 200000, 0 14.7s, 0.088s 0(0)
IVM 1 −16.8127 24+100001 48m40s 1
IVL 1 −16.9881 200001+18974 1m11s 1
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Table VI. Summary of test results for Example 6

alg #(run) f-best (mean,std) #(f-call) mean,std time(h,m,s) mean,std #(x*)

SA 40 18.2559, 10.5652 53250, 3470 1.9s, 0.18s 29(1)
GA 40 761.623, 11.6514 269215, 14240 0.48m, 0.079m 0(0)
TA 40 929.68, 2.93471 221982,0 13.8s, 0.13s 0(0)
RS 40 1431.82, 3.6e−14 400000, 0 3m41s, 0.24s 0(0)
IVM 1 0.000668513 198811+200001 8h8m27s 1
IVL 1 0.000710523 200000+36566 17m27s 1

finding the global solution and the new interval method IVL is clearly the
best.

With or without constraints, IVL is consistently shown to be better than
IVM for higher-dimensional problems, thanks to introduction of adequate
local sampling. This new strategy works as an effective accelerating device
for the interval method for two major reasons. (1) It accelerates the dele-
tion process by improving fbest more quickly. (2) It finds unwanted regions
more aggressively and more accurately than the standard interval method
so that a much smaller number of boxes would have to be processed. These
two major objectives are achieved in our interval method with assistance of
a new data structure, all at only a small fraction of computational over-
head.

6. Final comments

Based on the test results presented earlier, a number of observations can be
made.

(1) The major advantages of the interval algorithms over noninterval
algorithms include: (a) They are more reliable. Example 6 above shows sig-
nificant decay of performance of all four noninterval algorithms. But the
interval algorithms remain effective. (b) They are robust, not much affected
by round-off errors. This is a useful feature especially for optimization
problems involving uncertainty. (c) They offer all the global solutions by
a single run. Even multiple runs of noninterval algorithms with different
starting points cannot guarantee finding all those solutions. By the way,
out TA is capable of identifying more optimal or nearly optimal solutions
than most other noninterval methods as explained in Sun (2002). However
it still does not offer any guarantee as the interval methods do.

(2) One noticeable disadvantage of the interval methods is that they
generally require more memory and CPU time than the noninterval algo-
rithms for a single run. Such a problem may become more visible when
the optimization problem is of a large dimension. It may also occur when
the structure of the optimization problem is too simple or too complicated.
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In many practical applications, finding a desirable solution with a guaran-
teed accuracy is important at the cost of any reasonable CPU time. Interval
methods can offer such desirable solutions.

(3) Effectiveness of the new local sampling strategy in the interval
method: Interval algorithm IVL with the new local sampling strategy con-
sistently performs at least as competitively well as the interval method with
only the standard midpoint sampling strategy. In higher-dimensional cases,
IVL seems to be significantly better than IVM.

Not every feature of the new algorithm has been extensively tested yet.
We are constantly improving it as more tests are done. Nevertheless, the
existing results are encouraging and show a good promise. We hope that
this paper would stimulate further research efforts in this area.
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